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Abstract

Four genetic algorithms — the classical, Haupt’s, Brunetti’s and a modification of the classical algorithm suggested in the
present paper — are examined when they are used for the modeling of response surfaces in high-performance liquid
chromatography (HPLC). We found that the best results are obtained from our modification and the worst by Haupt’s
algorithm. The classical genetic algorithm gives satisfactory results, better than those of Brunetti’s algorithm. We also
ascertained that all genetic algorithms may get stuck in a local minimum other than the global one, except for our
modification, which can be considered to approach a global method. Finally, the time needed for the optimization of a
genetic algorithm and the combination of a genetic algorithm with a non-linear least-squares routine are considered and
discussed.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction minimum other than the global one and/or to
pseudo-solutions [1]. A pseudo-solution is a solution

In a recent paper the modeling of high-perform- obtained by a non-linear least-squares routine that
ance liquid chromatography (HPLC) response sur- does not correspond to a local minimum but it arises
faces has been studied by means of a new technique from the fact that at least one of the fitting parame-
which combines a non-linear curve-fitting procedure ters does not affect the value of the sum of squares

2with a Monte Carlo search for initial estimates [1]. of residuals (x ) when this parameter varies within a
This technique has been applied to experimental certain range of values. For this reason each pseudo-
systems and we found that it is, in general, a global solution appears just one time when we use the
method, i.e. a method that can find the global Monte Carlo routine described in [1].
minimum, whereas a non-linear least-squares tech- It is known from literature that the genetic algo-
nique alone is likely to be trapped into a local rithms offer an alternative solution to the above

problem, since they may determine the global mini-
mum of a function without being trapped into local*Corresponding author. Tel.: 130-31-997-773; fax: 130-31-
minima or pseudo-solutions [2–5]. Despite this997-709.
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rithms to HPLC problems is very limited. Thus, the number of adjustable parameters, which the
according to our knowledge, there are two papers global minimum depends on. The members of a
appearing in 1993 concerning strictly the use of chromosome are the genes x , x , . . . , x , and they1 2 q

genetic algorithms for the modeling of response are the adjustable parameters that need to be de-
surfaces in HPLC [5,6]. However, since then signifi- termined. The genes are selected by means of
cant progress has been made in genetic algorithms: random numbers from appropriate regions where
The replacement of the binary or Gray coding by real they are supposed to exist. Therefore, the initial
numbers, the development of various types of cross- population is randomly generated within pre-estab-
over, the use of non-linear mutation [3,4] and lished ranges of the genes x , x , . . . , x , by using a1 2 q

recently the development by Brunetti of a novel random seed which is different in each run of the
algorithm suitable for non-linear least-squares pro- genetic algorithm. Note that this algorithm as well as
cedures [7]. all the genetic algorithms we used are of continuous

There are two main problems concerning the use parameter, that is, the genes are real and not binary
of genetic algorithms: first, there is not just one numbers [2–4].
genetic algorithm and therefore we have to choose In least-squares fitting the target is to determine
which is the most effective; second, they require the the global minimum of the function:
appropriate adjustment of a number of parameters,

n
such as crossover probability, mutation probability, 2 2

x 5O( y 2 y ) (1)i,exp i,calctype of mutation, size of population etc., a procedure i51

that is time consuming. In the present paper we used
the classical algorithm, the algorithms proposed by where y are the experimental data and y arei,exp i,calc

Haupt and Brunetti and a modification of the classi- the corresponding calculated values from the func-
cal genetic algorithm proposed here. We checked tion to be fitted. In our case, this function describes
which of the above algorithms is more effective and retention surfaces in HPLC, i.e. surfaces concerning
whether by adjusting the parameters of a genetic the combined effect of pH and modifier concen-
algorithm in a certain experimental system we can tration on the capacity factor k of a solute. The
use these parameters for other systems as well. adjustable parameters of the above function are the
Finally, the possibility of combining a genetic algo- genes x x , . . . and the calculation of the value of1, 2

2rithm with a non-linear least-squares procedure is x at each chromosome is called evaluation cost.
also discussed. Mate selection is the operation where couples of

chromosomes are selected from the initial popula-
tion. There are several ways to mate the chromo-

2. On genetic algorithms somes. The main procedure is by means of the
roulette wheel [2–4]. In order to increase the per-

2.1. Classical genetic algorithm formance of this operation we used scaling, accord-
ing to Goldberg’s suggestion [2–4]. The mate selec-

Genetic algorithms are procedures that imitate the tion procedure creates couples of the general type:
natural evolution process and can be used for the x 5(x , x , . . . .., x ), x 5(x , x , . . . .,male 1m 2m qm female 1f 2f

computation of the global maximum or minimum of x ). Not all the members of the population can mate.qf

a function [2–4]. The basic scheme is the following: The percentage of the population chromosomes that
creation of original population→evaluation of mates is called crossover probability.
cost→selection of mate→reproduction→mutation→ Reproduction is achieved by the crossover opera-
new population. In the new population (generation) tion, which is a partial exchange of genetic content.
the same procedures are applied, i.e. evaluation of There are various types of crossover [2–4]. Here, we
cost, mate selection, reproduction, mutation, and the adopted the combined crossover technique [2–4]. In
whole circle is repeated m (m.1000) times. more detail, a gene, say x , is selected by means of4

The population consists of N chromosomes, that is, random numbers and the following offspring are
arrays of q real numbers (x , x , . . . , x ), where q is produced:1 2 q
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thx 5 (x , x , x , v , x , x , . . . x ) population is selected to be the N member of thechild1 1f 2f 3f 4m 5m 6m qm

new population and the whole procedure is repeated
until a stop criterion is fulfilled.x 5 (x , x , x , v , x , x , . . . x )child2 1m 2m 3m 4f 5f 6f qf

where v 5 bx 1 (1 2 b )x , v 5 bx 1 (1 24m 4m 4f 4f 4f 2.4. Our modification
b )x and b is a random number in the region [0,1].4m

Offspring replace their parents. We noticed that a genetic algorithm in certain
Mutation alters one gene of a selected chromo- systems may converge to a local or global minimum

some by a random change with a probability equal to after a relatively small number of generations, 2000–
the mutation rate. In the present paper, uniform or 5000. In these systems no significant improvement is
Gaussian mutation has been used [3]. made by increasing the number of generations,

The operations of mate selection, reproduction especially when we use Gaussian mutation. There-
and mutation create the new population from the fore, an apparent modification of the classical algo-
original one and the whole circle is repeated several rithm would be the following: we run the classical
times. The performance of the algorithm is enhanced algorithm for m generations, m ranging from about
by finding the best chromosome of one generation, 2000 to 5000. Then, an entirely new population is
i.e. the chromosome that gives in fitting procedures generated with N21 members (chromosomes) and
the minimum value of the cost function, and transfer- the best chromosome of the previous population is

thring it to the next generation. added as the N member. This procedure is repeated
M times and the best chromosome of all these

2.2. Haupt’s algorithm [4] populations is the final solution.
The above modification of the classical genetic

In this genetic algorithm the members of a gene- algorithm may be also considered as a modification
ration (chromosomes) are sorted according to their of Brunetti’s algorithm on the following two points:

2cost value, i.e. the value of x , from low to high (a) the algorithm we propose includes the creation of
values. Then the population is divided in two groups: mutations at each generation, and (b) in Brunetti’s
the first N chromosomes comprise the good algorithm the new population is created when thegood

chromosomes, whereas the rest N 5N2N , with variance value falls below a certain limit, whereas inbad good
2the relatively high values of x , are considered to be our algorithm this happens when the number of

the bad chromosomes. Mating takes place among the generations reaches a certain value.
N chromosomes and offspring replace the Ngood bad

chromosomes of the population. Mutation is applied
to the chromosomes of the total population. After 3. Application to the modeling of HPLC
mutation the chromosomes are sorted again and the retention surfaces
circle is repeated until a proper stop criterion is
fulfilled. In the present paper we used the above algorithms

to model retention surfaces in HPLC by determining
2.3. Brunetti’s algorithm [7] the coefficients of the theoretical equation adopted to

describe these surfaces. In particular, five retention
The essence of Brunetti’s algorithm is the lack of data sets were fitted to a selected theoretical equation

mutations. Due to this feature, the algorithm con- by means of the genetic algorithm we examined.
verges rapidly to a local or global minimum. The Four of these retention data sets, concerning the
lack of mutations also results rapidly in the decrease capacity factors of adenosine, hydroxyzine and ben-
of the variance of the cost values of the population. zoic acid in buffered mobile phases of different pH
When the variance value falls below a certain limit modified with methanol as well as the retention data
(variance edge value50.1 or 0.01 or 0.001), a new of adenosine in mobile phases modified with acetoni-
population is created from the beginning with N21 trile, were taken from literature [1,5,8,9]. The fifth
members. The best chromosome of the previous data set, concerning the capacity factors of 5-hy-
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ndroxyindole-3-acetic acid in isopropanol buffers, was
2 2studied experimentally in this work. x 5O(k 2 k ) (4)i,exp i,calc

i51The equations adopted for the theoretical descrip-
tion of the experimental data were the following where k are the experimental values of thei,exp[10,11]: capacity factor and k are the correspondingi,calc

values calculated from either Eqs. (2) or (3).2 20 0 ( q 1s )w 1( q 1t )w 0 2pH s w 1t w1 0 2 0 1 1k K e 1 k 10 e0 b 1
]]]]]]]]]]]]k 5 20 q w 1q w 2pH1 2K e 1 10b

(2) 4. Experimental

for a weak monoprotic base, and As noted above, the capacity factors of 5-hydroxy-
indole-3-acetic acid in isopropanol buffers were2 20 s w 1t w 0 0 pH (s 1q )w 1(t 1q )w0 0 1 1 1 2k e 1 k K 10 e0 1 a studied experimentally in this work. The main ex-]]]]]]]]]]]]k 5 (3)20 q w 1q w pH1 2 perimental conditions are the following. The experi-1 1 K e 10a
ments were carried out on a Shimadzu LC-9A HPLC

for a weak monoprotic acid. Here, w is the per- system using a Gilson electrochemical (EC) detector
centage or the volume fraction of an organic modifier set at 0.6 V vs. the Ag/AgCl reference electrode. A

0 0 2in a mobile phase of a given pH, k and k are 25034 mm (5 mm inertsil ODS-3) MZ analytical0 1

capacity factors of the neutral and charged species, column was used. The column was thermostatted at
respectively, extrapolated to a pure aqueous buffer, 308C. Different mobile phases consisting of an
s and t are parameters describing the variation of aqueous phosphate buffer [12] and isopropanol were0 0

0 2k with w (ln k 5ln k 1s w 1t w ), s and t are used. The total ionic strength of the mobile phases0 0 0 0 0 1 1
0the corresponding parameters of k (ln k 5ln k 1 was held constant at 0.02 M. Isopropanol concen-1 1 1

2 0 0s w 1t w ), K and K are the dissociation constants trations of 0, 0.8, 2, 3 and 5% were used. At each1 1 b a
1 1 1 2of the equilibria BH ⇔B1H and HA⇔H 1A , composition six different pH values were studied in

respectively, extrapolated to a pure aqueous mobile the pH range 3.1 to 7.74, as given in Table 1. The
phase, and q and q are parameters describing the concomitant effects of pH and isopropanol concen-1 2

0 2variation of K or K (ln K5ln K 1q w 1q w ). tration were studied on the elution behavior of 5-a b 1 2

Note that from the solutes we studied adenosine hydroxyindole-3-acetic acid. The flow-rate was set at
behaves like a monoprotic base, whereas all the other 1.0 ml /min. The hold-up, t , was estimated as 1.880

solutes exhibit the behavior of monoprotic acids. min. A volume of 20 ml of an aqueous standard
2As concerns the x function (Eq. (1)), it acquires solution containing 5 mg/ml of 5-hydroxyindole-3-

the form: acetic acid was injected. More experimental details

Table 1
Retention times of 5-hydroxyindole-3-acetic acid in isopropanol–aqueous buffer mobile phase as a function of pH and the volume fraction
of isopropanol, w

pH w t, min pH w t, min pH w t, min

3.10 0.00 211.0 4.52 0.00 102.00 6.89 0.00 21.90
3.10 0.008 81.6 4.52 0.008 40.90 6.89 0.008 11.20
3.10 0.02 38.0 4.52 0.02 19.50 6.89 0.02 6.64
3.10 0.03 24.6 4.52 0.03 14.10 6.89 0.03 5.26
3.10 0.05 14.3 4.52 0.05 8.37 6.89 0.05 3.77
3.54 0.00 210.0 5.25 0.00 58.20 7.74 0.00 18.50
3.54 0.008 80.7 5.25 0.008 25.40 7.74 0.008 9.83
3.54 0.02 36.6 5.25 0.02 13.20 7.74 0.02 6.18
3.54 0.03 24.7 5.25 0.03 9.44 7.74 0.03 4.90
3.54 0.05 13.9 5.25 0.05 6.00 7.74 0.05 3.61
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were described in our previous works, see for 5. Results and discussion
example Ref. [8].

The genetic algorithms were written in Visual We first model the response surfaces of the above
C11 and the calculations were carried out on a PC experimental systems using the Monte Carlo method
with a 600 MHz Pentium III processor. The per- described in [1]. Some of the results obtained are
formance of the genetic algorithms used in this paper reported in Table 2. In particular, Table 2 shows the
was tested in comparison with the performance of adjustable parameters that correspond to the global

2the genetic algorithm suggested by Michalewicz [3] minimum of x and the probability with which this
using many of the functions suggested in [3]. We minimum is found by the Monte Carlo. The regions
found that, depending on the function, the perform- where the adjustable parameters were searched are
ance of the algorithms used in this paper is compar- shown in Table 3. The standard errors of the
able and better than that of Michalewicz. It should be adjustable parameters of Table 2, calculated by the
noted that for the evaluation of the performance of a curvature matrix method using the CM1 procedure
genetic algorithm we may adopt three criteria: (a) [1], are listed in Table 4. It is seen that the
The ability of a genetic algorithm to locate the global uncertainty in the calculated values of the model
optimum, (b) the time needed for that, and (c) the coefficients q , t and t is high enough, indicating2 0 1

reproducibility, i.e. the probability that a global that no chromatographic insights can be gained from
optimum is found when a genetic algorithm is run the values of these parameters. Note that, according
once. The reproducibility is a crucial criterion for the to the theory [13,14] the values of t and t must be0 1

performance of a genetic algorithm since if, for positive numbers, but the high uncertainty cannot
example, it is very small, say less than 1%, the verify this prediction. It should be also noted that for
algorithm in fact cannot locate the global optimum the system of hydroxyzine in methanol–aqueous
and therefore its performance is bad. In what con- buffer mobile phase we have chosen q 5q 50,1 2

cerns the time criterion, in the present study the because (a) the experimental data are relatively few
operation time of a genetic algorithm is determined and for this reason we reduced the number of the
by the maximum number of generations and there- adjustable parameters to avoid over-fitting complica-
fore this criterion cannot be used for the performance tions, and (b) the treatment of q , q as adjustable1 2

of a genetic algorithm. parameters do not improve considerable the fitting

Table 2
2Values of (a) the adjustable parameters of Eqs. (2) or (3), (b) x and (c) the percentage of the successful attempts in finding the global

minimum
a bSystem 1 2 3 3 4 5

0k 22.566 22.349 21.252 17.725 45.974 119.7120
0 0 24 24 26 26 25 25K , K 3.33310 3.23310 4.81310 4.81310 5.09310 4.14310a b

q 22.838 29.512 0 0 0 243.1411

s 279.854 224.212 219.949 211.619 3.914 2140.9690

q 21366.00 105.609 0 0 0 2845.0592

t 706.816 79.823 4.100 4.100 211.336 2472.7370
0k 0.925 1.166 76490.7 7.100 0.168 10.9591

s 29.816 1.956 7.472 28.030 27.328 291.9911

t 41.681 299.371 211.925 211.924 0.609 1199.6691
2

x 3.498 7.824 1.068 1.068 0.127 131.37
% 25 96 16 97 66 34

a Systems: 15adenosine in acetonitrile–aqueous buffer; 25adenosine; 35hydroxyzine; 45benzoic acid in methanol–aqueous buffer;
555-hydroxyindole-3-acetic acid in isopropanol–aqueous buffer mobile phase.

b Fitted to the modification of Eq. (3) discussed in the text.
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Table 3
Ranges of the adjustable parameters of Eqs. (2) or (3) for the experimental systems studied

a bSystem 1 2 3 3 4 5

Min Max Min Max Min Max Min Max Min Max Min Max
0k 0 50 0 50 0 100 0 100 0 10 50 2000
0 0K ,K 0 0.1 0 0.1 0 0.01 0 0.01 0 0.01 0 0.01a b

q 21000 1000 21000 1000 0 0 0 0 0 0 2300 3001

s 21000 1000 21000 1000 2100 100 2100 100 2100 100 2300 3000

q 210000 10000 210000 10000 0 0 0 0 0 0 25000 50002

t 210000 10000 210000 10000 2100 100 2100 100 2100 100 2500 50000
0k 0 10 0 10 50000 100000 0 100 0 200 0 201

s 21000 1000 21000 1000 2100 100 2100 100 2100 100 2500 5001

t 210000 10000 210000 10000 2100 100 2100 100 2100 100 22000 20001

a Systems as in Table 2.
b Ranges of the adjustable parameters of the modified Eq. (3) for hydroxyzine in methanol–aqueous buffer mobile phase.

2(x 51.001 instead of 1.068). The same choice of pletely untrustworthy and eventually erroneous pro-
q 5q 50 has been adopted for benzoic acid in cedure. This problem can be overcome if we modify1 2

0 2methanol–aqueous buffer mobile phase. Eq. (3) and use instead of ln k 5 ln k 1 s w 1 t w0 0 0 0
0 2The most interesting result of Table 2 concerns the and ln k 5 ln k 1 s w 1 t w the following equa-1 1 1 1

system of hydroxyzine in methanol–aqueous buffer tions:
mobile phase. We observe an extremely high value of 0 2

0 0 ln k 5 ln k 1 s (w 2 w ) 1 t (w 2 w ) and ln k0 0,r 0 r 0 r 1k 576490.7 much higher than the value of k 51 0
0 221.252. However, this is physically meaningless, 5 ln k 1 s (w 2 w ) 1 t (w 2 w ) (5)1,r 1 r 1 r

since for an ionogenic solute the capacity factor of
0charged species (k ) should be less than the neutral where w is a reference value of w. In our case we1 r

0 0 0one (k ). This peculiar behavior has its origin to the have selected w 50.65 and therefore k , k are0 r 0,r 1,r
0fact that k is the extrapolated value of k via the referred to this value of w. An analogous modi-1 1

0 2 0equation ln k 5 ln k 1 s w 1 t w and similarly k fication of Eq. (3) has been suggested by Marques et1 1 1 1 0

is the extrapolated value of k via the equation ln al. [5]. The results obtained using the above modi-0
0 2k 5 ln k 1 s w 1 t w . However, for the system of fication of Eq. (3) are shown in Table 2 in column0 0 0 0

bhydroxyzine in methanol–aqueous buffer mobile 3 . Note that the global minimum is not affected by
phases we use three values of w 50.65, 0.70, 0.75 the use of Eqs. (5). Note also the great increase in
and therefore the extrapolation to w 50 is a com- the performance of the Monte Carlo method when

Table 4
Standard errors of the adjustable parameters of Table 2

a bSystem 1 2 3 3 4 5
0k 0.28 0.38 190.94 0.50 9.39 2.420
0 0 25 25 26 26 26 25K , K 4.36310 6.35310 1.02310 1.02310 1.9310 4.8310a b

q 21.95 13.85 – – – 38.271

s 3.20 1.18 67.66 4.24 24.77 8.590

q 401.27 118.47 – – – 876.012

t 91.27 10.33 48.96 49.04 32.41 389.450
0k 0.38 0.57 1783888.1 0.42 0.77 1.611

s 20.87 24.96 26.03 1.67 1.10 32.681

t 220.91 258.00 18.80 18.79 1.44 713.681

a Systems as in Table 2.
b Fitted to the modified Eq. (3) discussed in the text.
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this modification is used. A similarly interesting sively affects the performance of a genetic algorithm.
behavior of this system is observed when we apply In order to find the optimum pair of crossover
the genetic algorithms. This issue is discussed below. probability and mutation rate we worked as follows.

Apart from the global minimum, the Monte Carlo The crossover probability was changed from 0.5 to
method described in [1] finds all possible local 0.95 by steps of 0.025 and at each value of the
minima and pseudo-solutions. Thus, the retention crossover probability the mutation rate was changed
surface of adenosine in acetonitrile–aqueous buffer from 0 to 0.5 by steps of 0.05, which were further

2mobile phase exhibits a local minimum with x 5 reduced to 0.005 in the region of the best per-
4.40, which is found by the Monte Carlo method formance of the genetic algorithm.
with a probability equal to 0.74, whereas the prob- The effect of the mutation rate on the performance
ability of finding pseudo-solutions is only 0.01 [1]. of the classical algorithm applied to the first ex-
For the retention surface of adenosine in methanol– perimental system, i.e. to the retention surface of
aqueous buffer mobile phase, the Monte Carlo adenosine in acetonitrile–aqueous buffer mobile
method may be trapped in a local minimum with phase, is depicted in Fig. 1. Note that in Fig. 1 there

2
x 510.19 with a probability equal to 0.02 or in are actually three different stacked figures, with three
pseudo-solutions with the same probability of 0.02. independent vertical axes. Each figure corresponds to
The behavior of hydroxyzine and benzoic acid in a certain mutation rate. The x-axis is the run number
methanol–aqueous buffer mobile phases is quite of the genetic algorithm. That is, for example, the 20

2interesting; their retention surfaces do not exhibit points (s) shown in Fig. 1 are the solutions (x

local minima other than the global minimum. How- values) obtained by the classical genetic algorithm
ever, the Monte Carlo method may be trapped into a when it ran 20 times with mutation rate equal to
great number of pseudo-solutions with probability 0.05. Note also that the retention surface of this data

2equal to 0.84 for hydroxyzine, if we do not use Eqs. set exhibits two minima with x 53.5 (global mini-
2(5), and 0.34 for benzoic acid. Finally, the retention mum) and x 54.4. We observe that the optimum

surface of 5-hydroxyindole-3-acetic acid in iso- value of the mutation rate is 0.01. But even in this
propanol–aqueous buffer mobile phase exhibits a case the classical algorithm may be trapped into the

2 2second minimum with x 5151.94 found with a local minimum x 54.4 with a probability of ca. 0.5.
probability equal to 0.63 and a very small number of The maximum number of generations used for the
pseudo-solutions with a probability of 0.03.

Unlike the Monte Carlo method proposed in [1]
that can be used straightforwardly, provided that we
have defined proper ranges for the adjustable param-
eters, genetic algorithms require, apart from proper
ranges, the optimization of a number of parameters,
such as population size, maximum number of gener-
ations, type of mutation and mutation rate, type of
crossover and crossover probability, variance edge
value, etc. Here, for the ranges of the adjustable
parameters we used the same ranges with those of
the Monte Carlo technique, i.e. the ranges depicted
in Table 3.

Preliminary extensive tests using all the genetic
algorithms have shown that the type of crossover has

Fig. 1. Effect of mutation rate on the convergence of classicala small effect on the obtained results and a value of
algorithm applied to adenosine in acetonitrile–aqueous bufferthe crossover probability of around 0.8 gives the best
mobile phase using the following parameters: maximum number

results. The type of mutation affects the results. In of generations510 000, population size5100, crossover
particular the Gaussian mutation should be preferred probability50.8 and Gaussian mutation with rate50.05 (s), 0.01
over the uniform one. The mutation rate also deci- (1), 0.005 (d).
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2 2 2results of Fig. 1 was 10 000. We found that the value of x , x (min), over a set of 20 values of x

obtained results are not improved if we increase this obtained by repeated runs of the genetic algorithm.
2parameter. The results may be improved if we raise In addition, the mean value of x and the standard

2the population size. However, the increase of the deviation of the subset of the x values which are
2population size is accompanied by a considerable close to the global minimum (x ,4) are also

increase of the computation time and for this reason shown. We observe that the three genetic algorithms,
we used populations of 100 chromosomes in all i.e. classical, Haupt’s and Brunetti’s algorithms,
cases. exhibit almost the same performance.

Since the classical genetic algorithm may be stuck It is seen that, contrary to Marques et al. [5]
in a local minimum other than the global one, we conclusion that a genetic algorithm is a global
proceeded by examining the performance of Haupt’s method, all the genetic algorithms we examined may
and Brunetti’s algorithms using the same experimen- be trapped into a local minimum other than the
tal system, that is the retention surface of adenosine global one. For the retention surface of adenosine in
in acetonitrile–aqueous buffer mixtures. The op- acetonitrile–aqueous buffer mobile phase the genetic
timum values of the various parameters were the algorithms found the global minimum with a prob-
following: for Haupt’s algorithm maximum number ability of ca. 0.45. This is better than that of the
of generations510 000, mutation rate50.05 and Monte Carlo method, but the time needed for the use
N 570. For Brunetti’s algorithm we used 30 000 of the genetic algorithms is much more than that ofgood

generations, crossover probability50.8 and variance the Monte Carlo method. Thus, the Monte Carlo
edge value50.01. Note that the performance of method requires only 4 min on a PC with a 600 MHz
Brunetti’s algorithm increases by increasing the Pentium III processor. On the other hand, one run of
maximum number of generations, and the value the classical genetic algorithm requires 2 min and
30 000 was arbitrarily selected. The results obtained that of Brunetti’s algorithm 6 min. Since we need
by these two genetic algorithms are similar to those about 20 runs for a safe picture of the global
depicted in Fig. 1 by points (1). That is, all the minimum, the computation time is 40 min for the
genetic algorithms we studied up to now can find the classical algorithm and 2 h for that of Brunetti, plus
global minimum with a probability of around 0.45 the time needed for optimization of their parameters.
but they may also get stuck to the local minimum At this point we should clarify the following. A

2
x 54.4. Table 5 shows the probability P that an genetic algorithm does not converge to a certain

2 2algorithm finds the global optimum, the mean value value of x , but to a spectrum of x values, which
2kx l, the standard deviation s, and the minimum are close to the global or local minimum. Thus, the

Table 5
aResults from the application of the genetic algorithms to systems 1 and 2

2 2 2Algorithm P kx l s x (min) kx l s

System 1
2 2All values of x x ,4.0

Classical 0.50 3.96 0.45 3.5 3.52 0.04
Haupt 0.45 4.03 0.44 3.5 3.56 0.13
Brunetti 0.45 4.08 0.44 3.5 3.59 0.08
Our modification 1.00 3.55 0.05 3.5 3.55 0.05

System 2
2 2All values of x x ,9.5

Classical 1.0 8.01 0.13 7.8 8.01 0.14
Haupt 0.6 11.94 8.04 7.9 8.05 0.13
Brunetti 0.8 9.18 2.83 7.9 8.20 0.41
Our modification 1.0 8.06 0.12 7.8 8.06 0.12

a Systems as in Table 2.
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minimum. This is clearly depicted in Fig. 2. There-
fore, the system of adenosine in acetonitrile–aqueous
buffer mixtures is ideal for applying the modification
we propose.

We applied our modification using the same type
and probability of crossover as well as type and rate
of mutation with those of the classical algorithm.
According to the modification we propose, the
classical algorithm is run for m generations, then an
entirely new population is generated with N21
members and the best chromosome of the previous

thpopulation is added as the N member. The whole
procedure is repeated M times and the best chromo-
some of all these populations is the final solution. In
our application we tested two alternatives: m55000,

Fig. 2. Dependence of the best value upon generation for the
M56 and m53000, M510. The obtained results areclassical algorithm of Fig. 1 in two different runs indicated by the
depicted in Fig. 3 and in Table 5. It is seen that thesolid and the broken lines using Gaussian mutation with rate 0.01.
choice m55000 and M56 gives the best results.

We observe that from the four genetic algorithms
classical algorithm converges to the global minimum we examined only the modification we propose

2
x 53.5 with a probability ca. 0.5 means that only approaches to a global method. However, this feature

250% of the x values obtained from the classical is valid under the prerequisite that the classical
genetic algorithm are close to 3.5. genetic algorithm converges within a relatively small

Working with the classical algorithm we found number of generations, less than 5000.
that beyond a certain maximum number of genera- In order to examine whether this picture is charac-
tions, say 2000 to 5000, there is no significant teristic of the particular system, i.e. of the retention
optimization in the convergence to the global or local surface of adenosine from acetonitrile–aqueous buf-

fer mixtures, or not, we repeated the above analysis
to the rest of the experimental systems adopted in the
present study. The study of various systems, apart
from the performance of the various algorithms,
allows us to examine whether the parameters of the
algorithms require adjustment in each system or not.
This information is crucial if we take into account
the time needed in order to succeed an acceptable
performance of a genetic algorithm.

First we examined the retention surface of adeno-
sine in methanol–aqueous buffer mobile phases. We
found that if the adjustments are as in the previous
system, the classical algorithm is trapped into the

2local minimum x 510.19 with a probability of 0.5,
much higher than that of the Monte Carlo method,
which is only 0.02. However, the results are im-

2Fig. 3. x value vs. the run number for our modification of the proved radically by increasing the mutation rate to
classical genetic algorithm applied to adenosine in acetonitrile– 0.02. In this case the algorithm finds only the global
aqueous buffer mobile phase using the following parameters: 2minimum (x 57.824) with some oscillation (Tablepopulation size5100, crossover probability50.8, Gaussian muta-

5).tion with rate 0.01, and m55000, M56 (d); m53000, M510
(1). For the same system Haupt’s algorithm gave very



942 (2002) 93–105102 P. Nikitas et al. / J. Chromatogr. A

poor results. Thus, we found it very difficult to propanol–aqueous buffer mobile phase all the ge-
optimize this algorithm. The best results shown in netic algorithms give very good results except for
Table 5 were obtained using a mutation rate50.03 Brunetti’s algorithm whose convergence is rather

2and N 570. In this case we obtained: kx l5 poor. Note also that classical and Brunetti’s algo-good
211.94, s 58.04, x (min)57.91, whereas the global rithms were used with the same parameters as in the

minimum of this system is 7.824. The performance system of adenosine in methanol–aqueous buffer
of Brunetti’s algorithm is better than that of Haupt’s mobile phase, our modification was applied with
algorithm but still poor (Table 5). The results of our m53000 and M510 and Haupt’s algorithm was
modification with m53000 and M510 repetitions used with N 570 and mutation rate equal to 0.07.good

(total number of generations530 000) using muta- We have seen that a genetic algorithm does not
tion rate50.02 converge to the global minimum with converge to the same solution. That is, different runs
100% success exhibiting a small oscillation. give different solutions, which may correspond to the

2The results obtained for the last three systems, i.e. same value of x . This is clearly depicted in Table 7.
hydroxyzine and benzoic acid in methanol–aqueous However, this is not a problem since the distribution
buffer mobile phase and 5-hydroxyindole-3-acetic of values of a certain parameter falls within the
acid in isopropanol–aqueous eluent, are shown in uncertainty limits of this parameter. Thus if we
Table 6. For the first two systems classical and compare the standard deviations of Table 7 to the
Brunetti’s algorithms were used with the same corresponding values of Table 4 for system 1, we
parameters as in the system of adenosine in metha- conclude that the uncertainty limits of each model
nol–aqueous buffer mobile phase. Our modification parameter is about 10 times greater than those
was applied with m55000 and M56. Haupt’s obtained from a genetic algorithm. For example, the

0algorithm was used with N 570 and a mutation values of k , which are obtained from the classicalgood 1
2rate equal to 0.06 for hydroxyzine and 0.07 for algorithm when x ,3.6 for adenosine in acetoni-

benzoic acid. It is seen that Haupt’s algorithm gives trile–aqueous buffer mobile phase, have an average
the worst results, whereas all the other algorithms value equal to 0.95 and standard deviation 0.02. For

0converge satisfactorily to the global minimum. How- this parameter from Tables 2 and 4 we have k 51

ever, the most interesting result from this table 0.92560.38.
concerns the effect of the equation used in the fitting It is seen that indeed the fact that a genetic
procedure on the obtained results. We observe that algorithm yields a spectrum of solutions and model
when we replace the fitted equation by a more coefficients instead of a certain solution with certain
appropriate one, in our case if we modify Eq. (3) model coefficients is not a serious weakness. How-
using Eqs. (5) for the system of hydroxyzine in ever, if this feature of the genetic algorithms is
methanol–aqueous buffer mobile phase, then the considered as a defect, it can be completely over-
performance of all genetic algorithms, including come by combining a genetic algorithm with a non-
Haupt’s algorithm, is increased considerably. For the linear least-squares fitting procedure, like the Micro-
system of 5-hydroxyindole-3-acetic acid in iso- soft Solver, in the same way that the Monte Carlo

Table 6
aResults from the application of the genetic algorithms to systems 3, 4 and 5

bAlgorithm System 3 System 3 System 4 System 5
2 2 2 2 2 2 2 2kx l s x (min) kx l s x (min) kx l s x (min) ,x . s x (min)

Classical 1.306 0.310 1.068 1.070 0.0026 1.068 0.161 0.036 0.134 133.88 6.34 131.5
Haupt 4.482 2.636 1.068 1.070 0.0030 1.068 0.270 0.100 0.143 135.17 7.45 131.5
Brunetti 1.112 0.109 1.068 1.073 0.0050 1.068 0.163 0.026 0.127 145.58 19.69 131.7
Our 1.140 0.069 1.068 1.069 0.0006 1.068 0.134 0.007 0.127 133.07 4.62 131.4
modification

a Systems as in Table 2.
b Fitted to the modification of Eq. (3) discussed in the text.
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Table 7
Values of the adjustable parameters of Eq. (3), their average value, kPl, and the standard deviations, s, for adenosine in acetonitrile–water
calculated from the classical genetic algorithm at five different runs

Solution 1 2 3 4 5 kPl s

0k 22.621 22.591 22.598 22.557 22.515 22.58 0.040
0 26K 0.00033 0.000326 0.000327 0.000333 0.000333 0.00033 3.3310b

q 23.670 27.663 27.029 24.294 20.769 24.69 2.781

s 280.142 280.107 280.232 280.115 279.153 279.95 0.450

q 21375.92 21437.12 21428.54 21392.69 21328.78 21392.61 43.662

t 712.092 712.371 715.242 714.856 689.699 708.85 10.800
0k 0.945 0.991 0.957 0.927 0.951 0.95 0.021

s 210.869 215.807 213.189 210.255 210.719 212.17 2.331

t 50.394 102.407 77.010 47.291 47.610 64.94 24.361
2

x 3.498 3.498 3.498 3.498 3.498 – –

routine for search of initial estimates proposed in [1] using genetic algorithms. Solving the fitting problem
is combined with the Solver. In this case the genetic is useful in three main respects: first, tables with
algorithm searches for initial estimates and the non- chromatographic data can be replaced by a single
linear least-squares routine finds the final solution. equation; second, this equation may be used for

Here, we proceeded to this combination and in optimizing separations on a certain column; and
particular we combined the classical genetic algo- third, if this equation expresses a certain model, we
rithm and our modification with the Solver. In fact may discuss about physical or chromatographic
we used the results of the genetic algorithms as insights. Thus solving the fitting problem itself does
initial estimates for the Solver. This combination not provide chromatographic insights. It is the equa-
gave the following results: for systems that exhibit tion to be fitted that does that. Eqs. (2) and (3) we
just the global minimum, like the systems of hy- adopted are widely used in chromatographic studies
droxyzine and benzoic acid in methanol–aqueous but they are not related to a strict model. They do not
buffer mobile phases, this technique finds the global take into account activity coefficients [15,16] and
minimum with 100% success. It is seen that it is they assume an empirical dependence of ln K upon
superior to the Monte Carlo technique suggested in w, whereas the dependence of pK upon the modifier
[1] if we ignore the parameter of time consumption. content in the mobile phase is quite complicated
In systems with two or more minima the probability [17,18]. For this reason no discussion about chro-
of finding the global minimum is equal to or slightly matographic insights was made in the present paper.
better than that of finding the global minimum by the For the same reason we did not examine over-fitting
genetic algorithm alone. Thus, the combination of problems. The over-fitting is a great problem irre-
our modification with the Solver finds the global spective of the purpose of the fitting procedure.
minimum with a success close to 100%. At this point When it appears, the fitting equation cannot be used
we should clarify again that the genetic algorithm we for interpolation and/or its parameters have no

2propose gives a spectrum of x values that in all physical content. However, the over-fitting is not
cases we examined has an average value very close related to the method used to fit an equation to a data
to the global minimum. The combination of this set, as is evident from the fact that using genetic
genetic algorithm with the Microsoft Solver finds the algorithms or the Solver we find the same global
accurate value of the global minimum with a prob- minimum. The over-fitting is due either to the use of
ability close to unity and from this point of view this an improper fitting equation or /and to the data set
combination should be preferred to the use of the when there are very noisy data or data improperly
genetic algorithm we propose alone. spaced.

We shall complete our discussion with some The time needed for the application of a genetic
general comments. The investigation carried out in algorithm and the spectrum of solutions and model
this paper was focused on the fitting problem itself coefficients that it yields instead of a certain solution
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with defined model coefficients are usually consid- routine finds the global minimum of system 1 with a
ered as the most serious disadvantages of the genetic probability equal to 25% (Table 2). The improve-
algorithms. Although the later drawback can be ment in finding the global minimum is considerable.
easily overcome by combining the genetic algorithm However, extensive tests of the Monte Carlo method
with a non-linear least-squares routine, as described have shown that there exist cases that this method
above, we should have in mind that the main may fail to find the global minimum. For example, if
problem of fitting is not how much time we need to we apply the Monte Carlo method to system 3 using

0find a solution or if the solution will be a spectrum of the range 0 to 1 for the variable K , the methoda

solutions very close to the global minimum, but the cannot find a solution. This is due to the fact that the
certainty that the solution we found is indeed the Monte Carlo technique is based on a random search
global minimum. We shall make clear how difficult for initial estimates, which leaves a (small) probabili-
this issue is by an example. Consider that we are ty of missing the global minimum in a ‘‘difficult’’
fitting the experimental data of system 1 to Eq. (2) system, i.e. in a system where the global minimum is
using the Solver. In order to obtain good initial attained only when the initial estimates are very
estimates the experimental data set is divided into close to it. This drawback of the Monte Carlo search
four subsets, each subset characterized by a constant may be overcome by the use of a different search
value of w 50, 0.01, 0.03 and 0.05. Then using the than the random one and since it is well known that
Solver each subset is fitted to the following equation: the genetic algorithms use an ‘‘organized’’ search to

find the global minimum, we investigated in the
2pHk K 1 k 100 b 1 present paper the use of these algorithms to the

]]]]]k 5 (6)2pH fitting problem. The obtained results confirmed ourK 1 10b

choice. Thus, whereas the global minimum of system
In this way the dependence of ln K , ln k and ln 1 is found with a probability about 25% using theb 0

k upon w is determined. Therefore, the initial Monte Carlo routine, this probability is close to1

estimates of the adjustable parameters of Eq. (2) are 100% by using the genetic algorithm we propose. It
obtained by a least-squares fit of the ln K , ln k and is seen that indeed the proper use of the geneticb 0

ln k values to second order polynomials, since ln algorithms increases considerably the confidence that1
0 2 0K 5 ln K 1 q w 1 q w , ln k 5 ln k 1 s w 1 the solution we find corresponds to the globalb b 1 2 0 0 0

2 0 2t w and ln k 5 ln k 1 s w 1 t w . Then we find: minimum.0 1 1 1 1
0 0 0K 50.00034, k 521.7, k 51.0, q 5234.5, q 5 Finally, we should point out that in this paper web 0 1 1 2

768, s 5267.5, t 5398, s 50.35 and t 52455. have adopted the least-squares criterion, Eq. (1), for0 0 1 1

However, if these values are used as initial estimates, the best solution. This is a criterion generally ac-
2the Solver will converge to the local solution x 5 cepted when there are no outliers. Outliers are data

24.5 and not to the global one x 53.5. Note that the points that are far away from the ‘‘true’’ values.
above procedure of finding initial estimates is the Therefore, the residuals of the outliers are very large
most rigorous and for this reason it gives the illusion and since in the least-squares technique the residuals

2that the solution x 54.5 corresponds to the global are squared, outliers have a significant contribution
2minimum of system 1. However, only by great to x . In the presence of outliers the least-squares

chance we could find the global minimum of system technique should be replaced by a robust method.
1 by using the Solver or any other non-linear least- The genetic algorithms as well as the Solver can
squares routine without an additional routine for acquire high robustness if the least-squares criterion
searching for initial estimates. of Eq. (1) is replaced by the least sum of absolute

The above example clearly points out the need for deviations ux u [19]. So the influence of the outliers is
2more powerful methods for the fitting problem in much less on ux u than on x . The experimental data

cases where the fitting function has a large number we used here do not have outliers, as is easily
of adjustable parameters. In [1] we have proposed a detected from the plots of k vs. w at constant pH and
combination of a Monte Carlo technique and the k vs. pH at constant w. For this reason the least-
Solver to solve the fitting problem. The above squares technique was adopted here for finding the



942 (2002) 93–105 105P. Nikitas et al. / J. Chromatogr. A

2best solution. The high value of x 5131.4 for much better than that of the Monte-Carlo technique
suggested in [1]. This probability is close to unity ifsystem 5 is not due to outliers but to the fact that the
the system exhibits just one minimum. It is alsovalues of k are much higher than those of the other
close to unity in systems with two or more localsystems. In addition, it might show that a better
minima provided that we use our modification withmodel than that of Eq. (3) should be more suitable
the Solver.for this system. However, the target of this in-

vestigation was not to find out which equation
describes properly each experimental data set but to
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